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Abstract-This paper treats the motion and heat transfer in an electrically conducting fluid that is bounded 
by two parallel, isothermal walls, and by a plane free surface. Gradients in the surface tension of the free 
surface drive a strong recirculating thermocapillary convection. In the presence of a magnetic field which 
is parallel to the free surface, the thermocapillary convection is confined to a thin boundary layer adjacent 
to the free surface. Only when the P&let number is at least O(HC’), where Ha is the large Hartmann 
number, is the heat flux entering the free surface redistributed by thermal convection inside the boundary 
layer before entering the quiescent core. This problem is a model of the floating-zone growth of semi- 

conductor crystals with a uniform, axial magnetic field. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 
In the floating-zone process, a single crystal is grown 
from a cylindrical melt which is held by surface tension 
between the growing single crystal and the melting 
feed rod. A heat source keeps the liquid temperature 
above the solidification temperature, and causes large 
temperature gradients along the free surface. Since the 
surface tension increases from the hottest part at the 
center of the free surface to the cold parts at the crystal 
and feed rod, the surface-tension gradients drive two 
thermocapillary circulations in opposite directions 
above and below the center of the free surface. 

The thermocapillary convection is unsteady when 
the temperature difference along the free surface is 
more than 1 K for a typical semiconductor process 
[l]. The unsteady thermocapillary convection is unde- 
sirable since it produces periodic spatial variations of 
the dopant concentrations in the crystal (striations), 
which in turn lead to faulty electronic devices. Since 
molten semiconduc:tors are good electrical conduc- 
tors, an externally applied, steady magnetic field can 
eliminate the unsteady motion, and reduce the 
strength of the residual steady motion in the melt [2]. 
There are no striations in a large part of a crystal 
grown by the floating-zone process with a strong axial 
magnetic field [l, 31. Numerical simulations have 
shown that a magnetic field can eliminate unsteady 
thermocapillary convection [4, 51. For the floating- 
zone process, an axial magnetic field is parallel to the 

tAuthor to whom correspondence should be addressed. 

essentially cylindrical free surface. This contrasts with 
the Czochralski process where an axial magnetic field 
is perperldicular to the horizontal free surface. 

For typical axial magnetic field strengths (B = O.l- 
1.0 T), the thermocapillary convection is confined to 
a thin parallel layer which lies between the free surface 
and a quiescent core region. For the heat transfer from 
the free surface to the colder crystal and feed rod, 
there is qnly conduction in the core, while convection 
may be comparable to conduction in the parallel layer 
if the P&let number, Pe, is sufficiently large. 

A previous paper [6] presented numerical solutions 
for the flow patterns in various floating-zone 
geometries, but this previous work did not include the 
effects of convective heat transfer or inertia. Here is 
presented an asymptotic solution for a strong mag- 
netic field. While numerical solutions are still needed 
for the flow and heat transfer in the parallel layer, the 
computational requirements are far less than those for 
a fully numerical solution for some magnetic field 
strengths. In addition, the asymptotic analysis reveals 
parametric trends more readily than fully numerical 
treatments, and serves as a complement to the latter. 

Using an asymptotic analysis, Hjellming and 
Walker [7] showed that the heat flux is redistributed 
by a parallel layer with an O(1) flow through it when 
Pe = O(1). Since the present thermocapillary con- 
vection is confined to the parallel layer, there are equal 
and opposite O(1) flows inside this layer, so that the 
convective heat transfers cancel, and there is no redis- 
tribution of the heat flux for Pe = O(1). With the flow 
entirely confined to the parallel layer, Pe must be 
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NOMENCLATURE 

separation-of-variable coefficient 
characteristic magnetic flux density 
width of truncated domain 
integration function 
variable coefficient 
Hartmann number, BL(a/p)“* 
electric current density in z-direction 
characteristic length 
interaction parameter, aB’L/pU 
nondimensional pressure 
P&let number, UL/K 
Prandtl number, ~/PK 
maximum nondimensional heat flux 
magnetic Reynolds number, p,aUL 
nondimensional temperature 
dimensional temperature 
temperature at walls 
characteristic temperature difference 
characteristic velocity 
nondimensional x-velocity 
nondimensional y-velocity 

Greek symbols 
N- 1 ~$2 

Pe Ha-‘14 
Hal’4 
surface tension 
thermal diffusivity 
(kn/2)‘/*, k = integer 
absolute viscosity 
magnetic permeability 
stretched coordinate, Ha’/’ x 
density 
electrical conductivity 
nondimensional stream function 
dimensional stream function, 
UL$. 

Subscripts 

; 
core region 
Hartmann layer 

I intersection region 

I x, y, z Cartesian coordinates. P parallel region. 

large, namely O(HU’/~), where Ha is the large Hart- 
mann number, before convective heat transfer redis- 
tributes the heat flux. 

2. PROBLEM FORMULATION 

The plane, dimensionless geometry is presented in 
Fig. 1. An incompressible, electrically conducting 
liquid is bounded by two parallel, isothermal walls at 
dimensional temperature T,*, and by a plane free sur- 
face which is perpendicular to the walls. With half the 
distance between the parallel walls as the charac- 
teristic length L, and with the origin at the center of 

x + --oo 

Fig. 1. Model problem showing asymptotic subregions for 
Ha>> 1. 

1 

the free surface, the liquid occupies the region 
- a3<x<o, - 1 < y < 1. There is an applied, 
uniform, steady magnetic field which is perpendicular 
to the walls. 

The electric current in the liquid produces an ‘indu- 
ced’ magnetic field, which is superimposed on the 
externally applied field. The magnetic Reynolds 
number, R,,, = p#JL, is the characteristic ratio of the 
induced to the applied magnetic field strength. Here 
pp and u are the magnetic permeability and electrical 
conductivity of the liquid, while the appropriate 
characteristic velocity for magnetically suppressed 
thermocapillary convection [8] is 

__ (-dIldT*)AT* 
U=‘ ’ * . 

BL(ap)“Z (11 

Here the surface tension I is assumed to decrease 
linearly with increasing dimensional temperature T*, 
so that dT/dT* is a negative constant, while AT* is the 
maximum elevation of the free-surface temperature 
above Ta, B is the characteristic magnetic flux density 
of the applied field, and p is the liquid’s viscosity. For 
a typical gallium arsenide GaAs floating-zone process 
with AT* = 15 K and B = 0.5 T [l], U = 5 mm s-‘, 
and R, = 0.0001. Therefore, the induced magnetic 
field is neglected, so that the magnetic field, nor- 
malized by B, is simply a unit vector in they-direction. 
For GaAs, c = 0.65 MS m-‘, p = 5710 kg me3, 
p = 0.00278 Pa s, and dT/dT* = -0.18 mN m-’ 
K_i,andL=254cmisused. 
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Table 1. Values of parameters for various magnetic-flux densities 

B(T) ‘II [mm s-y N Ha Pe a Y 

0.1 25.03 1.2 38.9 88.3 209.801 35.361 
0.2 12.51 9.2 77.7 44.1 74.176 14.867 
0.3 8.34 31.2 116.6 29.4 40.376 8.956 
0.4 6.26 73.9 155.5 22.1 26.225 6.251 
0.5 5.00 144.4 194.4 17.7 18.765 4.729 
0.6 4.17 249.5 233.2 14.7 14.275 3.766 
0.75 3.34 487.4 291.6 11.8 10.214 2.849 
1.0 2.50 1155.2 388.7 8.8 6.634 1.988 

10.0 0.25 1.2E+6 3887.4 0.9 0.210 0.112 

For a steady, two-dimensional flow : 

(24 

(2b) 

j, := u &+aO=o 
ax ay 

Here u and v are the X- and y-components of the 
velocity normalized by U, P is the pressure normalized 
by aiJB’L, j, is the .z-component of the electric current 
density normalized by uUB, and T = (T* - T3/ 
AT*. The interacti.on parameter N, Ha and Pe are 
defined by 

aB2L 

0 

l/Z 
N=- 

PU 
IYa = BL d 

P 
Pe= UL/K 

where p and K are ,the density and thermal diffusivity 
of the liquid. Equations (2a) and (2b) are the x- and 
y-components of the Navier-Stokes equation with the 
electromagnetic (EM) body force due to j,, equation 
(2~) is the z-component of Ohm’s law with no electric 
field because there is no electric field in an axi- 
symmetric floating zone, equation (2d) is the con- 
tinuity equation, and equation (2e) is the heat equa- 
tion neglecting Joulean heating and viscous 
dissipation [9]. The values of U, N, Ha and Pe for a 
typical GaAs floating zone, and for values of B 
between 0.1 and 10 T, are given in Table 1. It is noted 
that Pe decreases as the magnetic field strength is 
increased since U varies inversely with B. 

The floating zone is melted by a heat flux at the free 
surface given by 

aT -= 
ax q(1 -v’) at x = 0. (3a) 

This quadratic heat flux has been used by Mtiller and 
Rupp [4] to model optically-heated floating zones. 

The free surface heat flux is symmetric about y = 0, 
so that the flow and temperature are also symmetric 
about y = 0, and only the domain given by 
- 03 c x 6 0 and 0 < y < 1 is modeled. The other 
boundary conditions at the wall and free surface are 

u=v=T=O at y=l (3h) 

au u=o -= 
ax 

-Has at x = 0. (3c,d) 

Equation (3d) reflects a balance between the viscous 
shear stress and the gradient of the surface tension. 
The symmetry conditions are 

v=aU=g=t) at y=O. ay ay (34 

Since AT* is defined as the maximum free-surface 
temperature difference : 

T=l at x=y=O (3f) 

which determines q. Whatever heat tlux is needed to 
maintain a given free-surface temperature difference 
is provided. 

It is assumed that B is sufficiently large that Ha >> 1 
and N >> 1, so that simplified versions of equations 
(2) can be solved in various subregions of the domain. 
The subregions (shown in Fig. 1) are the inviscid, 
inertialess core (c), the Hartmann layer (h), with an 
O(Ha-‘) thickness adjacent to the wall at y = 1, the 
parallel layer (p), with an O(Ha-I”) thickness adjac- 
ent to the free surface at x = 0, and the intersection 
region (I) with O(Ha-‘1’) x O(Ha-‘) dimensions. 

The coupled asymptotic analyses for the core and 
Hartmann layer show that u, v, j, and P are zero 
in both subregions to all orders of Ha and N. The 
thermocapillary convection inside the parallel layer 
does not perturb the stagnant fluid in the core. The 
temperature in the core and Hartmann-layer sub- 
regions is given by T, = Xi?=,, skT,(x, y), where the 
small parameter 6 will be determined by matching the 
parallel-layer temperature Tp. Equation (2e) gives 

_+!s=o a2T, 

ax2 ay2 

for all k. Equations (3b) and (3e) apply to each Tck. 
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The separation-of-variables solution for k = 0 (or any 
k) is 

T@ = 2 A, exp [(n+ 1/2)xx] cos [(n+ 1/2)7r.v] (5) 
“=O 

where the coefficients A,, will be determined by mat- 
ching TP. The heat flux entering the liquid at the free 
surface may be redistributed by the convection inside 
the parallel layer, so that equation (3a) may not apply 
to T,. 

For the parallel layer, the stretched coordinate 
l = H&2 x is introduced. The choice for AT* means 
that T, is O(l), equation (3d) indicates that up is 
0(Hu’j2), equation (2d) indicates that u, is O(l), equa- 
tion (2~) indicates that j,, is O(l), and equation (2a) 
indicates that PP is O(HU-“~). The appropriate 
asymptotic expansions are 

VP = Hd’2 kfo6kV,dt,Y) up =jz, = k$.o~ku,(t,Y) 
(6a, b) 

p, = Ha-“’ k~o~kP,(t,Y) Tp = k&kT,(t,Yh 
6% 4 

The parallel-layer solution depends on the relation- 
ship between the two large parameters Ha and N. It 
is assumed that N = c(-l Ha3/*, where CI is an O(1) 
parameter, so that inertial and viscous effects are com- 
parable for the thermocapillary convection inside the 
parallel layer. If c( = 0, the solution becomes the iner- 
tialess solution [6]. In theory, as a--* co, the parallel 
layer splits into a thicker inviscid inertial layer with 
an O(N -‘j3) thickness and a thinner viscous layer with 
an O(Ha- ‘I’) thickness [lo]. However, it appears that, 
as LX increases past some unknown critical value, an 
instability occurs, and the steady, two-dimensional 
flow changes to an unsteady three-dimensional flow 
141, so that no steady, two-dimensional,flow actually 
exists for N >> Hu’/~. A treatment of this stability 
problem will be presented in a future paper. 

The leading terms in equation @a)-Qd) give 

(W 0 ap, =t _---_u 

at PO 

1 
= apfl a2%J 

ay + at2 
- (7b) 

aupo+au,=o. 
at ay 

2hu;, (7~) leads to a stream function $,,([, y), 

8th ah -- 
‘@ - ay upo= -ay. @a, b) 

Equation (1) for U leads to an O(1) stream function 
inside the parallel layer, i.e. the magnitude of the 
dimensionless circulation approaches a constant value 

as B becomes large, so that the dimensional circulation 
decreases as B- ‘. Since the O(1) circulation is con- 
fined to a thin layer, o is large. Equations (7a) and 
@a) lead to another integration function F,,(t, y), 
where 

aF0 aF-0 *o=ag P”“=-qy Pa, b) 

a2F, a2F, -_ -__ 
**-agay ‘fl- at2 

(9~ d) 

Equation (7b) gives the equation governing F,, : 

[ 

a2F, a3F, a2F, a3F, a2F, a4F, ---- =-_-. 
’ sap ay at ay at3 1 ay2 at4 

(10) 
Here I+& and F,, are the leading terms in asymptotic 
expansions which are the same as equation (6b) and 
(6c), respectively, for the 0( 1) stream function $ and 
the O(HU-‘/~) integration function F. There are arbi- 
trary additive constants in $ and F which are elim- 
inated by setting $ = F = 0 at r = 0 and y = 0. The 
intersection region (I) matches any value of up at 
y= l,aslongas 

u,=O at y=l (11) 

neglecting O(HU-“~) terms [ll]. Equations (3c)-(3f) 
and (ll), and matching the stagnant core, give the 
boundary conditions on F,, : 

@0 -=0 5=% at l=O (12a,b) 
at 

F,=O %=O at y=O (12c,d) 

F,=O at y=l (12e) 

F,-+O as t+-co. (12f) 

For sufficiently small values of Pe, the flow has no 
effect on the 0( 1) temperature, i.e. the A, in equation 
(5) are determined by applying equation (3a) to 
dT,/dx at x = 0, and the aTJay at [ = 0 in equation 
(12b) is simply lJT,/ay at x = 0. In this limit, the 
thermocapillary convection is driven by a fixed free- 
surface temperature gradient, and only depends on a 
[ 121. The present paper is focused on values of Pe 
which are large enough that the thermocapillary con- 
vection inside the parallel layer changes the free-sur- 
face temperature from that for pure thermal conduc- 
tion, so that the temperature and flow problems are 
coupled. This coupling occurs when Pe is comparable 
to Hu’14, so that Pe = y Hdi4 is introduced, where y 
is an O(1) parameter. The 6 in the expansion for T, 
and in equations (6) is Hu-‘/~. Equation (3a) gives 
the boundary conditions 

(1% b) 
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where q = X&, EZU-~‘~~~. Matching the core tem- 
perature gives the conditions 

Tpo -+ T&O,y) T,, -+ Tcr(O,y) (14a,b) 

Tpz + 5 !$ (0, y) + Tc2 (0, y) (1% 

as r + - co. Equation (2e) gives 

!%!I?=0 
at2 

(15) 

and the solution which satisfies equations (13a) and 
(14a) is T&t, y) = ;r,O(O, y). Equation (2e) now gives 

a2T*, ar, a'F0 - = -Y~to~Y~$t,Y). 
at2 

(16) 

The solution which satisfies equations (12a), (12f), 
(13b) and (14b) is 

T,,(&y) = T,,l(O,y)-~~(O,y)F,(r,y). (17) 

Now equation (2e) gives 

a2 Tp2 

--=y a52 

aZF, aT,, _ -- 
at2 ay 

-~(o’y)~ . I (18) 

Equations (13b) and (14~) give 

Z(O,Y) = 4ou -Y')- J 0 avp2 
--m 

-jp- tt,v) dt. 

(19) 

When equations (17) and (18) are introduced into 
equation (19), the integrals of the terms involving F, 
and T,,(O, y) are both zero because F, also satisfies 
equations (12a) and r(12f). After integrations by parts 
with the same equations, equation (19) becomes 

c$(O,Y) = qo(l-y’)+y2$ 

The last term represents the redistribution of the heat 
flux in the y-direction due to the thermocapillary con- 
vection inside the pa.rallel layer. The integral in the 
last term is 

J ’ hid& --cd so that it increases from zero at y = 0 to a maximum 
where the circulation is maximum, and then decreases 
to zero at y = 1. Since the integral of the last term 
from y = 0 toy = 1 is; zero, the total heat ffux into the 
core equals the total beat flux into the free surface, i.e. 
there is no O(1) heat flux from the parallel layer to 

the wan, as one would expect, since the parallel-layer 
equation does not include conduction in the y-direc- 
tion. Equation (20) indicates that the heat flux into 
the free surface is transferred in the y-direction from 
below the level of maximum circulation to above this 
level before it enters the core. 

Equation (12b) is replaced by 

$=F(O,y) at t=O. (21) 

Equations (lo), (12a), (12c)-(12f) and (21) govern 
Fo(& y), while the A, in equation (5) are determined 
by equation (20), which is a non-linear equation 
because F. depends on aT,/ay at x = 0. We solve for 
F. with a Chebyshev spectral collocation method. To 
the column of unknown coefficients in the double 
Chebyshev polynomial expansion for F. on the 
domain truncated at 5 = - 12 are added the 
coefficients A,, in equation (5), so that we solved for 
F. and Tti simultaneously. Since equations (10) and 
(20) are non-linear, the solution is iterated, using the 
previous solution for the second-order derivatives on 
the left-hand side of equation (lo), and for @,/at in 
equation (20). The truncated integral in equation (20) 
was evaluated with a trapezoidal quadrature with at 
least eight points between any adjacent zeros of the 
most oscillatory Chebyshev polynomial. 

3. lNERlr&LH+s SQUJ~ Pm N>> iil’n 

For c( << 1, the separation-of-variables solution for 
equations(lO), (12a), (lk)-(12f) and (21), withequa- 
tion (5), is 

(- l)“(n+ l/2) 
[k2 - (n + 1/2)2] 

(22b) 

where a, = (kn/2)‘j2. The integral in equation (20) can 
be evaluated analytically : 

0 

JO _-m $! ’ de = 2 2 f Gkr sin (kny) sin (kry) 
k-l I=1 

Pa) 

Wb) 

Equations (5) and (23a) are introduced into equation 
(2O), which is then muItiplied by CDS [(?a + 1/2}7cyJ and 
integrated from y = 0 to y = 1 in order to obtain a 
set of algebraic equations for the coefkierrts A, in 
equation (S), and for the heat fluxqo : 
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A,+4ay2 F A&+1/2) -f : Gd’mu 
n=O k=l,=I 

4( - 1)” 
- a4(m+1,2)4q0 = 0 form=0,1,2,3 ,... (24a) 

F mnkl = i[~(m-n+k-l)+Q(m-n-k+f) 

+Q(nt+n+l-k-l)-Q(m-n+k+l) 

-Q(m-n-k-I)-Q(m+n+l+k-2) 

-Q(m+n+l-kfl)] (24b) 

where Q (0) = 1, and Q(z) = 0 for i # 0. Equation 
(3f) gives the only inhomogeneous equation : 

F&=1. (25) 
n-0 

Equations (22b) and (23b) show that Gk, depend on 
A,, so that equations (24a) and (25) for A, and q. are 
nonlinear. In the iterative solution, the last set of 
values of A, was used to determine Gk, through equa- 
tions (22b) and (23b), and then the truncated equa- 
tions (24a) and (25) were solved for the next set of 
values of A, and q. using Gauss elimination. For the 
smallest nonzero value of y, the A, for y = 0 was used 
for the first values of Gk,. For each successively larger 
value of y, the converged values of A, for the previous 
value of y were used for the first values of Gkl. 

The values for a and y in Table 1 show that a is 
larger than y for our typical GaAs floating zone. In 
the next section are presented the spectral collocation 
solutions for the pairs of values of a and y in Table 1 
for B= 10.0, 1.0,0.75 and 0.6 T, where the B= 10.0 T 
case is a base case for a << 1 and y << 1. Also presented 
are the spectral solutions for the same values of a with 
y = 0, and for the same values of y with a = 0, in order 
to separate the effects of inertia and convective heat 
transfer. The analytical solution for a = 0 presented 
in this section served as a benchmark to test the accu- 
racy of the numerical spectral collocation solution. 
The numerical results for a = 0 and for all cases of y 
agreed extremely well with the analytical results. 

Since y = Pr H&4 a, where Pr = p/pk is the Prandtl 
number, liquid-metal thermocapillary convection in 
much larger geometries with much stronger magnetic 
fields might have significant values of y for small 
values of a, in spite of the small values of Pr. For such 
cases, the present analytical solution would be much 
better than a numerical solution since it requires a 
very small fraction of the computational resources for 
the same accuracy. 

4. RESULTS AND DISCUSSION 

Magnetic field strengths of 10.0, 1 .O, 0.75 and 0.6 T 
were chosen for the results presented in Section 4.1. 
These magnetic field strengths correspond to values 
ofa = 0.210,6.634, 10.214and 14.275,andy = 0.112, 
1.988,2.849 and 3.766, respectively, as shown in Table 
1. The results for the same values of c( and y = 0 are 

t t 

w (b) 

Fig. 2. Contours of the nondimensional stream function + 
for: (a) B = 10.0 T with t+G = O.O2k, for k = (M and (b) 

B = 0.6 T with + = O.O2k, for k = C-4. 

presented in Section 4.2 in order to study inertial 
effects without convective heat transfer, i.e. with a 
fixed free-surface temperature. The results for the 
same values of y and a = 0 are presented in Section 
4.3 in order to study the effects of convective heat 
transfer without inertial effects. The results in Section 
4.3 were computed with the spectral code for arbitrary 
values of a and y, and with the analytical solution in 
Section 3 for a = 0. The excellent agreement between 
the two sets of results for every value of y provided a 
validation of the spectral code’s accuracy. For the 
spectral code, the semi-infinite domain was truncated 
at 5 = -d, and symmetry conditions were applied 
here. The value of d was increased until the results 
were independent of d. Only the odd Chebyshev poly- 
nomials in ({ + d)/d and y were included because of 
symmetries. Variation of the numbers of polynomials 
showed that 30 polynomials in each direction were 
sufficient to give excellent results for every case. Equa- 
tion (5) for Tfo was truncated at n = 30 for all cases, 
except those for B = 0.6 T. For B = 0.6 T, convective 
heat transfer produces a very large heat flux to the 
core near y = 1, and 40 terms in equation (5) were 
needed in order to capture this extreme heat flux 
accurately. 

4.1. Variable magneticjux density B 
The streamlines for B = 10.0 T and B = 0.6 T are 

shown in Fig. 2(a) and (b), respectively. The top 
and bottom horizontal axes are the unstretched x 
and stretched r coordinates, respectively. For 
- 1 ( y < 0, there is a clockwise circulation given by 
the mirror image of the streamlines in Fig. 2. The 
widths of the parallel layers are Ax = 0.04 or 
2.5Ha-‘I* for B = 10 T, and Ax = 0.15 or 2.3Ha-‘/’ 
for B = 0.6 T. The width Ax of the recirculation grows 
as B decreases since fluid traveling across the magnetic 
field experiences a weaker EM body force. The 
location and magnitude of the maximum value of the 
stream function $, also change with B, and these 
changes affect the convective heat transfer in the recir- 
culating flow. At 10.0 T, $,,,, = 0.136 at x = -0.010 



and y = 0.640, while, at 0.6 T, IL,,,, = 0.097 at 
x = -0.037 and y := 0.770. For tl = 0.210, inertial 
effects are negligible, so that only the viscous force 
and the EM body force oppose the acceleration of the 
flow by the surface-tension gradient. For u = 14.275, 
the surface-tension gradient must also overcome a 
large inertial ‘force’ opposing the acceleration, so that 
ti is smaller. The delay in the acceleration of fluid 
pI:icles due to inertial opposition shifts the location 
of 4L in the flow direction, i.e. toward the wall. 

The maximum dimensional circulation I+?* = UL$ 
decreases as B is increased. For example, at 10.0, 1 .O, 
0.75 and 0.6 T, lO’$;t;,, = 0.10,0.72,0.87 and 1.04 m* 
SK’, respectively, i.e. about a lo-fold increase in the 
volumetric flow rate per unit length. 

The free-surface temperature distributions T&O, y) 
for B = 10.0 T and 13 = 0.6 T are shown in Fig. 3(a). 
As B changes from 118.0 T to 0.6 T, T&(0, y) decreases 
for 0 < y Q 0.75, and. increases for 0.75 < y < 1. Since 
Pe = 14.7 and 0.9 at B = 0.6 and 10.0 T, the con- 
vection of internal energy is greater at B = 0.6 T. As 
noted in Section 2, the convective heat transfer in the 
parallel layer transfers the heat flux entering the free 
surface from the plane of symmetry toward the wall. 

Before entering the core region, the heat flux enter- 
ing the free surface is redistributed by convection 
inside the recirculating flow in the parallel layer. The 
amount of the heat flux that is redistributed inside the 
parallel layer depends on the magnitude of Pe, which 
in turn is a function of B (see Table 1). The asymptotic 
analysis showed that the heat flux into the core is first 
affected when Pe = O(HU”~), so it would be expected 
to see a change only ,when y Z 1. The variation of the 
core heat flux cYT,/&(O, y) is shown in Fig. 3(b) for 
B = 10.0, 1.0, 0.75 and 0.6 T. For B = 10.0 T 
y = 0.210, so the effects of convective heat transfer 
are negligible, and the core heat flux is equal to the 
parabolic heat flux entering the free surface, even 
though Pe = O(l), namely Pe = 0.9. With an O(1) 
Pe, the flow adjacent to the free surface, moving from 
the center of the free surface towards the wall at y = 1, 
convects heat upward.. However, the flow further from 
the free surface, moving from the wall towards the 
plane of symmetry, convects heat downward, exactly 
canceling the effect of the upward flow. At B = 1.0, 
0.75 and 0.6 T, the value of Pe = 8.8, 11.8 and 14.7, 
while the value of y == 1.988, 2.849 and 3.766, respec- 
tively. Figure 3(b) shows the redistribution of the heat 
flux for these values of B, and indicates that, as the 
magnetic field strength is reduced, convective heat 
transfer grows stronger. This effect is evident by the 
noticeable decrease and increase of Z”../ax(O, y) in the 
regions 0.2 < y < 0.75 and 0.75 < y < 1, respectively. 
Since energy is taken away from the region near the 
middle of the free surface, additional heat input is 
required to maintain T (0, 0) = 1. At B = 10.0, 1.0, 
0.75 and 0.6 T, the values of q. = 1.539, 1.593, 1.627 
and 1.669, respectively. 

l.O- 

Figure 3(c) indicates that the position of maximum 
free-surface velocitv ~(0. v) shifts toward the wall as 

Fig. 3. (a) Surface temperature distribution T&(0, y) for 
B= 0.6 and lO.OT. (b) Heat flux entering theeore cYT,(O, y)/~Yx 
for B = 10.0, 1.0, 0.75 and 0.6 T. (c) Free-surface velocity 

, &“,\~>,, u&O, y) for B = 10.0,0.75 and 0.6 T. 
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1.0 
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Fig. 4. Free-surface velocity ~~(0, y) for y = 0 with 
TV = 0.210, 10.214 and 14.275. 

B decreases. This shift, like the shift of G,,,, can be 
attributed to the effects of inertia, but could also be 
due to an effect of heat convection that causes a larger 
surface-tension gradient near the wall region. At 
B - 10.0, 0.75 and 0.6 T, the maximum u&O, y) are 
0.543,0.462 andO.440, and occur at y = 0.725,0.860 
and 0.900, respectively. 

The temperature and flow solutions are inherently 
coupled in thetiocapillary convection because the 
free-surf&e temperature gradient drives the liquid 
motion. Only by investigating the effects of inertia and 
convection independently can the nature of the heat 
transfer through the thermocapillary-driven, recir- 
culating flow be fully described. 

4.2. Variable 01 with y = 0 
The spectral code was run for the same values of CI, 

but with y = 0 so that there is no convective heat 
transfer. The heat flux entering the free surface is 
simply transferred by conduction through the parallel 
layer to the core region. No conduction occurs in 
the y-direction inside the parallel layer for large Ha. 
Although the surface-temperature distribution is not 
presented, T&O, y) is virtually identical to that shown 
in Fig. 3(a) for B = 10 T. 

The values of v,,,(O, y) for y = 0 and c( = 0.210, 
10.21.4 and 14.275 are shown in Fig. 4. As B decreases 
from 10.0 to 0.6 T,-the inertial effects grow stronger, 
and shift the location of the maximum value of v&O, 
y) towards thb wall aty = 1. At a = 0.210, 10.214 and 
14.275,u&O,y) =0.544,0.506and0.490aty=0.720, 
0.866 and Q.891, respectively. Whereas v&O, y) 
decreases as B decreases, the dimensional, maximum, 
free-surface velocity 103u$,(0, y) = 0.14, 1.69 and 2.04 
m s-l, for a = 0.210, 10.214 and 14.275, respectively, 
i.e. the dimensional velocity decreases by an order of 
magnitude with an order-of-magnitude increase of B. 

Comparing the maximum ~~(0, y) with the results 
presented in Section 4.1 indicates that convective heat 
transfer has very little effect on the position of the 
maximum velocity. However, for a = 0.210, 10.214 

1.0 
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“0 0.5 
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3.0 
r 

1.0 

I 

(cl 
Fig. 5. (a) Surface temperature distribution T&(0, y) for 
D: = 0 with y = 0.112 and 3.766. (b) Heat flux entering the 
core U&O, y)/i% for a = 0 with y = 0.112, 2.849, 3.766 
and 4.729: (c) Free-surface velocity u,,,,(O. y) for a = 0 with 

y = 0.112,2.849 and 3.766. 
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and 14.275, the maximum o$,(O,y) is decreased by the 
influence of convective heat transfer by 0.2, 9.5 and 
11.4%, respectively, because the convection alters the 
free-surface temperature distribution, which in turn 
affects the thermocapillary force that drives the flow. 

4.3. Variable y with a = 0 
Figure 5(a) shows T&O, v) for y = 0.112 and 3.766 

which correspond to those values of y for B = 10 
and 0.6 T, respectively, but with a = 0. A comparison 
of Fig. 3(a) with Fig. 5(a) indicates that the elim- 
ination of inertial effects produces a lower tem- 
perature near the center of the free surface, and a 
higher temperature near the wall. Figure 5(c) shows 
v&O, JJ) for y = 0.1112,2.849 and 3.766, and a = 0. A 
comparison of thes’e velocity profiles with those shown 
in Fig. 3(c) at the corresponding values of B = 10.0, 
0.75 and 0.6 T, indicates that the absence of inertial 
effects allows the fluid to accelerate to higher values 
of o&O, y) near the middle of the free surface, so that 
there is more convective heat transfer for a given y 
with a = 0 than with the actual values of a. The 
maximum z+,(O,y) = 0.543, 0.471 and 0.451 occurred 
aty=0.707,0.809and0.839fory=0.112,2.849and 
3.766, respectively, corresponding to an increase in 
~(0, y) by 0.0, 2.0 and 2.5% due to the absence of 
inertial effects. Sinularly, the absence of inertial effects 
caused the maximum y location of vPO(O, y) to decrease 
by2.5, 5.9and6.8%,respectively.Aty = 0.112,2.849 
and 3.766, the values of q,, = 1.750, 1.674 and 1.539, 
which correspond to an increase in q,, by 0, 2.9 and 
4.9%, respectively, also due to the absence of inertial 
effects. 

The heat flux into the core aT,/ax(O, y) is shown 
in Fig. 5(b) for y = 0.112, 1.988, 2.849, 3.766 and 
4.729, which correspond to values of B = 10, 1.0,0.75, 
0.6 and 0.5 T, with IT = 0. Also included is the B = 0.5 
T case with a = 0 ; however, no comparison can be 
made with Fig. 3(b) because no solution could be 
found with a = lg.765 and y = 4.729. Comparing 
results for those values of y which correspond to 
B = 0.75 and 0.6 ‘1: shows that aT,/ax(O, y) is lower 
for 0 < y < 0.5, and much larger for 0.5 < y < 0.9. 
This decrease and :increase in U,/ax(O, y) is due to 
the higher velocities, near the middle of the free surface 
convecting heat from 0 < y < 0.5 to 0.5 < y < 0.9. 
Yet, in the absence of inertia, the free-surface vel- 
ocities are nearer 1.0 the wall, so that more heat is 
convected in the re,gion 0.9 < y < 1 .O when inertia is 
included, and causles the sharp rise in the core heat 
flux in that region. 

5. CONCLUSION 

The model presented here represents the floating- 
zone process that is used to grow high-perfection, 
single-crystal semiconductors. Since thermocapillary 
convection is a cau.se of defects in the floating-zone 
process, an understanding of the heat transfer and 

fluid motion in the process is needed in order to grow 
defect-free crystals. In the presence of a strong axial 
DC magnetic field, the thermocapillary convection is 
confined to a thin boundary layer adjacent to the free 
surface, leaving a quiescent inner core region. The 
heat flux entering the free surface is redistributed in 
the thin boundary layer when Pe is O(Ha’/4), where 
Ha is the large Hartmann number, and is proportional 
to the applied magnetic flux density B. The asymptotic 
analysis also revealed that the strong inertial effects, 
which led to the detrimental unsteady thermocapillary 
convection in floating-zone process, were eliminated at 
large magnetic flux densities, as was the convective heat 
transfer. Furthermore, an order-of-magnitude decrease 
in the volumetric flow rate was observed with an order- 
of-magnitude increase in the magnetic flux density. 
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